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Abstract. The approach to the reduction of the spatial problem of plane bending a composite 

discrete-inhomogeneous beam of arbitrary cross-section to the approximate two-dimensional 

bending problem of the equivalent multilayer beam has been discussed here. The result is 

represented in the form of relations for determination the characteristics of the equivalent 

multilayer structure by physical and mechanical materials characteristics of the original beam's 

phases and the system of static, geometric and physical relations of the corresponding two-

dimensional problem. The obtained equations are similar to the plane problem equations of the 

elasticity theory, but instead of stresses, they contain internal efforts consolidated to the main 

plane of the beam. The equations of the approximate two-dimensional problem were used to 

solve the problem of static bending a composite console of arbitrary structure with a load on 

the free end, taking into account the uniform change of the temperature field. The given system 

of equations and relations is the starting point for the construction of non-classical deformation 

models and solving a wide range of problems concerning the deformation of a direct composite 

beams.  

1.  Introduction 

Beams of discrete-inhomogeneous, composite structure are increasingly used in various fields of 

mechanical engineering and construction. The research of mechanics deformation of such elements 

contributes to the development of methods for their design, which is a necessary condition for 

effective practical implementation of composites. However, the construction of theoretical models of 

composite beams is complicated by anisotropy of mechanical properties of their material, 

heterogeneity of the structure, significant susceptibility to transverse displacements, uneven thermal 

expansion of composite components, even with a uniform temperature field, etc. 

For most traditional structural materials, the model of a linear-elastic body is acceptable when 

solving problems of mechanics. In [1, 2] it was experimentally established that carbon plastics, even at 

elevated temperatures, shows an almost linear relationship between stresses and strains before failure. 

Despite the significant physical nonlinearity of the reinforced concrete matrix material [3], for such 

composites, with some caveats, it is also permissible to assume the linear-elastic work of the 

components. It has become topical to develop deformation models of composite elements based on the 

linear theory of elasticity. 

The exact solutions of spatial deformation problems of composite beams have been obtained only 

for simple shapes and cross-sectional structures (circle, annular multilayer structure) [4-7] and in cases 

of loading (tension-compression, pure bend). 

A lot of works [8-35] have suggested exact solutions of plane problems of elasticity theory 

concerning composite beams, directly or indirectly. Such solutions preferably allow one of the types of 

external loads to be taken into account. There are also works devoted to bending by force and moment 

at the end [8-12], uniformly distributed normal load on the longitudinal faces [8, 13-21], linearly 

distributed load [22-25], load distributed by the law of sinusoids [26, 27]. Several works consider 

more complex types and combinations of loads. In works [28-31], the load is considered as the sum of 
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the power series, in [32, 33, 35] it is studied as trigonometric series, and in [34] it is discussed as their 

combinations. Most of these works are devoted to composite homogeneous or continuously 

inhomogeneous beams with different types of elastic materials symmetry. Only in some works 

[9, 10, 12, 17, 21, 25, 35] multilayer beams are presented. 

Plane solutions for composite beams are relatively simple and give precise distributed components 

of the stress-strain state. They can be directly used only for the calculation of beams with a rectangular 

cross-section. Their structure is formed by a package of flat layers perpendicular to the force plane. 

However, in practice, composite beams have a more complex shape and cross-sections structure. 

Non-classical models of bending a composite beams, for example [36, 37, 38, 39], are also 

constructed as approximate plane problem solutions of the elasticity theory. Іn some works, while 

constructing such models, there is a possibility to take into account the arbitrary structure of the cross-

sections. In particular, the construction of an iterative model in [38] is carried out by introducing static 

and kinematic hypotheses at the level of the spatial problem. Next, integrating by the width of the 

section, the three-dimensional equations of the elasticity theory are reduced to generalized two-

dimensional ones, but without taking into account the susceptibility of beam materials to transverse 

compression. The combination of such an approach with methods for constructing exact solutions of 

plane problems of the elasticity theory for multilayer beams is quite promising. This will allow to 

obtain practical ratios for determining stress-strain state when bending composite beams with an 

arbitrary cross-sectional structure. 

2.  Materials, hypotheses and research methods 

Consider a direct composite beam with a constant structure and cross-sectional dimensions relative to 

length – see figure 1. The beam consists of m  discrete continuous single-connected or multi-

connected phases 1 2 3, , , , ,k mP P P P P , which include the matrix, reinforcement, adhesive layers and 

other elements of the composite, made of appropriate different materials (figure 1, a). The phases of 

the beam are rigidly connected on common surfaces, there is no relative displacement and separation. 

The beam has a longitudinal plane of symmetry, relative to which its cross-sections are symmetrical in 

shape and structure. 

The beam is under the action of external loads distributed on its longitudinal faces with a width of 

1,2b  and the ends – see figure 1, b. Normal and tangential loads are distributed symmetrically with 

respect to the main plane of the beam ( xOz ). Longitudinal lateral cylindrical surfaces, with generators 

 1,2 z  are free from external loadings. The figure 1, b shows the loads acting only in the accepted 

positive directions. Despite this conditionality, we assume that the load system is balanced. 

The material of the composite beam’s phases can be homogeneous or continuously inhomogeneous 

(functionally gradient) in the plane of the cross section. It can also be isotropic or orthotropic with 

planes of elastic symmetry parallel to the coordinate planes of the coordinate system xyz . Physico-

mechanical characteristics of the materials of the beam phases are known: 

                           
, , , , , , , , , , , , ,

k k k k k k k k k k k k k k

x y z xz zy yx xz zy xy x y z aE E E G G G S         

where 
 

const
k

aS   – within a homogeneous phase and    ,
k

aS f y z  – in the general case of a 

continuous-inhomogeneous phase. 
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Figure 1. Scheme of a composite beam: (a) side view; (b) cross section, right view. 

For the whole beam, the characteristics of the inhomogeneous material will be piecewise 

continuous functions  ,S S

a a y z    with discontinuities of the first kind at the boundaries of the 

phases, which can be conditionally represented in the following form: 

 
  

1

,
m

kS

a k a

k

p S


   (1) 

where kp  – characteristic function of phase k : 

   
1, ;

,
0, .

k

k k

k

K P
p p K y z

K P


  


 (2) 

For the analytical description of the characteristic functions (2), the Heaviside function can be used. 

For example, for an arbitrary phase of a composite beam, which is limited in cross-section on the sides 

by continuous curves  , 1k l z  and  ,k l z , and at the bottom and top by horizontal lines 1kz   and kz , 

the characteristic function can be written as follows: 

        , 1 , 1 .k k l k l k kp H y H y H z z H z z 
             (3) 

For a beam with an arbitrary cross-sectional structure, it is always possible to divide it in height by 

kz  horizontal lines into a number of generalized layers. Within these layers, the characteristic 

functions of the phases can be represented as (2). This gives a generalized approach to the analytical 

representation of the mechanical characteristics functions of an inhomogeneous beam (3). 

Due to the accepted condition of absolutely rigid contact of phases, the material of the considered 

beam is continuous. Accordingly, the classical equilibrium equations and geometric relations of the 

elasticity theory are valid for such an element: 

 

2 2

2 2

2

2

0, 0,

0,

yx xy y zyV Vx zx
x y

yz Vxz z
z

u v
F F

x z y t x y z t

w
F

x y z t

 



         
              

          

    
      

    

 (4) 
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x z y

xz zy yx

u w v

x z y

w u v w v u

x z z y x y

  
     

  

     
        

     

 (5) 

where , ,V V V

x y zF F F  – projections of bulk forces per unit mass of beam material;   – function of 

density distribution of beam materials; t  – time. 

The physical dependences of Hooke's law also remain valid within individual phases. However, for 

all inhomogeneous beams, they must take into account the change in mechanical characteristics in its 

cross-section. This can be achieved by replacing the elastic constants in the classical equations with 

the distribution functions of physical and mechanical characteristics: 

 

1
, ,

1
, ,

1
, ,

yx yx zx z
x x xz xzE E E G

x y z xz

y xy x zy z

y y zy zyE E E G

y x z zy

yz y xz xz
z z yx yxE E E G

z y x yx

T

T

T

 


 



 


   
         

   

    
         

   

   
         

   

 (6) 

where T  – change in temperature field inside the beam. 

Given the received load (figure 1) static boundary conditions on the longitudinal faces and ends of 

the beam will be written as 

    , ,| 1 , | 1 , | 0,x x x x xz x x xz xy x xp p
  

 

             (7) 

    , ,| 1 , | 1 , | 0, 1, 2 .zx z z zx z z z z zy z zp p
  

 

               (8) 

For a symmetrical section, the side curves of its contour are distinguished only by a sign: 

      2 1 ,z z z      (9) 

where  z  – an arbitrary piecewise continuous function that does not change the sign when 

 1 2,z z z . 

Then, based on geometric considerations, we write the guide cosines of the normal to the lateral 

cylindrical surfaces: 

  

1 2 1 2
2 2

1 1 , 1 , 1,2 .y z

d d d
m n

dz dz dz

 

         
                      

 (10) 

Given the absence of loads on the side surfaces, the static boundary conditions for them, taking into 

account (10), will be written as 

 
 

 
 

 
 

1 1 1

1 1 1
1 | 0, 1 | 0, 1 | 0.yx zx yz z y yzy y y

d d d

dz dz dz
  

  

        

       
                   
     

 (11) 

Equations (4),(5) and (6) constitute a complete system of equations of the elasticity theory spatial 

problem for the considered composite beam. Their analytical solution in general in accordance with 

the boundary conditions (7), (8), (11) encounters significant mathematical difficulties. 
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However, by introducing some physical assumptions about the properties of phase materials, the 

dimension of such a problem can be reduced, which simplifies its research and analytical solution. 

3.  Reduction of the spatial problem of plane bending a composite discrete-inhomogeneous beam 

of arbitrary cross-section to the approximate two-dimensional problem  

We consider the beam narrow enough to neglect the deformation of the composite's phases along the 

axis Oy . This is equivalent to the assumption of absolute stiffness of the materials of all composite 

beam's phases in the specified direction: 

 , , , , 0, , , .E G G

yx xy yz zy y y zy yx

               (12) 

We also assume a uniform distribution of the temperature field along the axis Oy : 

  , , .T T t      (13) 

Substituting (12) for the physical dependences (6), we have: 

 

, , 0,

1
, 0, 0.

x zx z xz xz
x x z z yE E E E

x z z x

xz xz zy yxG

xz

T T
 

     
           

   

      


 (14) 

Taking into account (14), the geometric relations (5) have the form: 

 

, , 0 ,

, 0 , 0 .

x z

xz

u w v

x z y

w u v w v u

x z z y x y

  
    

  

     
      

     

 (15) 

Solving the third, fifth and sixth relations (15), taking into account the assumption of plane 

deformation of the beam, we obtain: 

 
   

     

0, , , , , , ,

, , , , , , , , .x x z z xz xz

v u u x z t w w x z t

x z t x z t x z t

  

        
 (16) 

Solving (14) with respect to stresses and integrating the width of the section (within 

   y z z   ), taking into account (13) and (16) we have: 

 , , ,S S S S G

x xx x zx z x z zz z xz x z xz xz xzT T                    (17) 

where , ,S G

xx xz   – functions of the consolidated elastic characteristics of the inhomogeneous material 

of the composite beam: 

 

   

 

 

1 1
2 2

1
2

2

, ,

, ,

S E E E E S E E E E

xx x x x z xz zz x z x z xz

S S E E E E G G

xz zx x z xz x z xz xz xz

E E
E x x z xz z

x x
E E

x z xz

dy dy

dy dy

  
 

 

 
 

 

  




                               

                  

 
    

   
  

 

 

 
2

, ;
E E

E x z x xz x
z z

E E

x z xz

dy dy

    



 

 
      

     
      

 

 (18) 
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, ,x zy   – functions of the consolidated stresses along the width of the beam’s cross-section: 

 , , , .x x z z y y zx zxdy dy dy dy

   

   

                (19) 

In equation (18) it is taken into account that for a composite beam with isotropic and orthotropic 

phases: E E

x zx z xz

     , as a result we have S S

zx xz  . 

Solving (17) with respect to deformations and comparing with the corresponding expressions (14) 

we obtain the summary relations of Hooke's law for a composite beam: 

 
1

, , .x xz xzz
x z x z x z xz xzE E E E G

x x z x xz

T T
 

   
              

    
 (20) 

and ratios for consolidated mechanical characteristics: 

 
         

       

1 1 1

1 1

, , ,

, .

E S S S S S S S S S S S S S

x zz xx zz xz zx xz zz zx x xx zz xz zx zx z zz x

E S S S S S S S S S S S

z xx xx zz xz zx z xx zz xz zx xz x xx z

  
   

 
  

                    

                

 (21) 

We equate the right-hand sides of the corresponding relations (14), (20) and solve the obtained 

equations with respect to stresses , ,x z xz   . As a result, we obtain the dependences for the transition 

from the consolidated stresses , ,x z xz    to distributed across the width of the cross-section: 

 

 

   

   

 

   

   

2

2

1
,

1

E E E E E E E
E

x z xz xz z x z xz x x xz z z
x

x E E E E E EE E
x z z xz z z x x x x zx z xz

E E E
E E

xz xz z x x xz z xz z
x z

z E E
E E

x z xz x x z zx z xz

T

   

    

   

    

                  
                    

           
 

           

,

.

E E

x z

G

xz
xz xzG

xz

T

 
 
   

 


  



 (22) 

Integrate the equilibrium equation (4) along the width of the beam’s cross section (within 

   y z z   ). Taking into account the rule of the definite integral differentiation respect to the 

parameter and equations (9), (16), (19), we obtain: 

 

2

2

2

2

2

2

| | ,

| | ,

|

Vx zx
x yx zx y yx zx y

xy zy V

y y zy y y zy y

Vzx z
z yz z y yz

u d d
F

x z t dz dz

v d d
F

x z t dz dz

w d d
F

x z t dz dz



 



 





       
              

      

       
              

      

     
            

    
| ,z y

 
 
 

 (23) 

where ,xy zy   – functions of the consolidated stresses along the width of the beam’s csection 

(similarly (22)); , , ,V V V

x y zF F F   – summary components of bulk forces and density distribution 

function: 
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     , , ,V V V V V V

x x y y z zF F dy F F dy F F dy dy

   

    

   

             

The right-hand sides of equations (23) are similar to the corresponding boundary conditions (11), 

taking into account which we have: 

 

2 2

2 2

2

2

0, 0,

0.

xy zyV Vx zx
x y

Vzx z
z

u v
F F

x z t x z t

w
F

x z t

 



    
       

     

  
   

  

 (24) 

In the case where the load on the lateral cylindrical surfaces , , ,, , 0x y zp p p    , but symmetrical: 

 , , ,, , 1x x z z y yp p p p p p
  

      , in the right parts of the first and third equations (23) will be the 

sums of projections of the corresponding external loads on the plane of the beam symmetry ( xOz ),and 

the second equation will be zero, as in the absence of loads: 

 

22 2

2 2

22

2

2 1 , 0,

2 1 .

xy zyV Vx zx
x x y

Vzx z
z z

u d v
F p F

x z t dz x z t

w d
F p

x z t dz

  

 

      
          

      

    
       

    

 

That is, the loads on the lateral cylindrical surfaces will directly enter the system of consolidated 

static equations and will affect the stress distribution along the cross-section height. 

Integrating the static conditions (7) and (8) over the width of the section, we write: 

    , ,| 1 , | 1 , | 0,x x x x xz x x xz xy x xq q
  

 

             (25) 

    , ,| 1 , | 1 , | 0, 1,2 .zx z z zx z z z z zy z zq q
  

 

               (26) 

The second equation (24) and the boundary conditions (25) and (26) will be satisfied if 

 0, 0xy zy    , (27) 

нowever, this does not mean that the stresses ,xy zy   are zero. 

Thus, for a consolidated two-dimensional problem based on (15), (16), (20), (24), (27) we can write 

the following system of equations: 

 
2 2

2 2
0, 0,V Vx zx zx z

x z

u w
F F

x z t x z t

     
       

     
 (28) 

 , , ,x z xz

u w w u

x z x z

   
      

   
 (29) 

 
1

, , .x xz xzz
x z x z x z xz xzE E E E G

x x z x xz

T T
 

   
              

    
 (30) 

The system of eight equations (28-30) contains 8 unknown functions: x , z , zx  – consolidated 

internal efforts (dimension N m ); x , z , xz  – averaged linear and angular deformations; u , w  – 
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averaged displacements. Efforts x , z , zx , in addition to the specified system of equations, must 

meet the summary boundary conditions (25), (26). 

In an arbitrary section of the beam, the integral conditions of equilibrium of the beam part, cut off 

by the cross-section with the coordinate x , must be fulfilled: 

 

   

2 2

1 1

2

1

2 2

, 1 , 1

1 10 0

2

, , 1 1

1 0

| , | ,

| | ,

z zx

x zx x xz z

z z

z x

x z x zx x

z

dz q d N dz q d Q

z dz x q z q d Q x M



   

 

    



         

          

    

 

 (31) 

where 1 1 1, ,N Q M  – components of internal force factors from loads in the initial section: 

  
2 2 2

1 1 1

1 1 1 1 1 1, , .

z z z

x xz x

z z z

N q dz Q q dz M zq dz         (32) 

The above approach actually reduces the problem of bending a composite beam with an 

inhomogeneous cross-section of arbitrary structure to the problem of bending some equivalent 

rectangular multilayer section of unit width. In the case where the contours of the homogeneous 

phases of the composite beam consist of vertical and horizontal lines, the generalized layers of such an 

equivalent beam will have constant physical and mechanical characteristics throughout the thickness. 

Otherwise, the generalized layers of the equivalent beam will be constantly inhomogeneous or 

functionally gradient in thickness. 

Let the structure of an equivalent multilayer beam consist of m  generalized layers under conditions 

1 2 3 , ,, , , , , ,bd bd bd bd k bd mz z z z z z . Then, at the boundaries of the layers, based on the conditions of 

absolutely rigid connection of the original beam’s phases, which provide equality of full effort and 

displacement at each point of the common boundary, the following conditions must be met: 

        
, , , ,

1 1
| | , | | ,

bd k bd k bd k bd k

k k k k

xz z z xz z z z z z z z z

 

          (33) 

        
, , , ,

1 1
| | , | | , 1, 1.

bd k bd k bd k bd k

k k k k

z z z z z z z zw w u u k m
 

        (34) 

The system of equations (28-30) is similar in form to the equations of the plane problem of the 

elasticity theory, but instead of stresses in static and physical dependences it contains their equivalent. 

Using this similarity, the solution of this system can be obtained by analogy with the known solutions 

of the plane problem of the elasticity theory for multilayer beams. 

4.  Solution of the problem of static bending a composite console of arbitrary structure with a 

load on the free end taking into account the uniform change of the temperature field 

As an example of solving the obtained system of equations, consider the solution of the problem of the 

composite console's static bending (figure 2) with an arbitrary load on the initial free end 

( , ,, 0z zxq q   ), a uniform change in temperature field ( constT  ) and in the absence of bulk forces. 

 
Figure 2. Scheme of a composite beam. 
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Similarly to [12], where a similar problem for a multilayer beam is considered, but without taking 

into account thermal deformations, we solve the solution of the problem with respect to the function of 

tangential stresses xz . According to the second integral condition (31): 

  .xz xz z    (35) 

According to the construction of the solution in [21] by successive solution of static, physical and 

geometric equations, we obtain 

  
1

1 1 1 1

0 2 2 2

, 0, ,

zT T
E E

x x x z xz x

z

N N Q M M Q
zx z T z dz

B B B B

  
           

 
  (36) 

 

   
1

1 1 1

2 2 0

1 1 1 1

2 2 0 2

,

1
, ,

T T

x

zT T
E

z xz xz xz x z xz xG

xz z

Q M M N N
zx z

B B B

Q M M N N Q
zx z T z dz

B B B B

    

 
    

 
             

 

 (37) 

   
1 1 1

2 1

2

1 1
2

2

1 1 1 2
0, 0,

0 2

1

2

| | ,

z z z

E

x xzG

xzz z z

T T

x z z z z

Q z zx z
u z dz z dz dz D

B h

N N M M z z z z
x zx u u

B B h h



   

   
         

    

   
   

  
 (38) 

   

 

1 1

1 2 1

1 1

3 2

1 2 1

2 2

1
0, 0, , 0

0

6 2

| | | ,

z zT

xz xz

z z

z zT

xz xz x z x z z x z z z z x

z z

Q D M Mx x
w x z dz z dz

B h B

N N x x
dz T dz u u w

B h h

 

   

     

    
           

        


         

 

 

 (39) 

where ,T TN M  – internal force and moment from thermal stresses 

    
2 2

1 1

, ;

z z

T E T E

x x x x

z z

N T dz M T z dz           (40) 

0 2 2, ,B B D  – integral characteristics of rigidity of a beam cross-section 

      
2 2 2

1 1 1 1 1 1

0 2 2

1
, , ;

z z zz z z

E E E

x x x xzG

xzz z z z z z

B dz B z dzdz D z dz z dz dz
 

        
  

       (41) 

2 1 10, 0, , 0| , | , |x z z z z z z xu u w       – unknown movements of the extreme points the initial end of the beam. 

Solution (36-39) is obtained under the condition that the distance Oz   from the lower longitudinal 

surface to the axis of the beam ( Ox ) is determined by the ratio 

  
0 0

,

h h

E E

O x xz z dz dz       (42) 

where E

x
  – distribution function of the longitudinal elastic modulus for the case when the beginning 

of the coordinate system is on the bottom line of the section. 

It should be noted that for a narrow multilayer beam considered in [12], the solution (36-39) will be 

accurate, although it gives values consolidated by the width of the cross-section values of internal 
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efforts instead of stresses. For a beam of arbitrary structure, these relations constitute an approximate 

solution of the problem, and do not give all the components of the stress state. However, having the 

distribution of the consolidated efforts (36), according to (22) we can find an approximate distribution 

of stresses in the output beam. Using these relations according to the spatial equations of equilibrium 

(4), we can obtain an approximate distribution of stresses , ,y y y     that will correspond to the 

physical assumption (12). 

Rigid fixing of the end face of a beam with a coordinate 2x x , it is possible to model conditions: 

 
1 2 1, , ,| 0, | 0, | 0.x l z z x l z z z z x lu u w         (43) 

Applying (38) and (39) under conditions (43) and solving the obtained equations with respect to the 

unknown displacements of the initial end, we obtain 

 

1 2

1

2 2

1 1 1 1 1 2 1 1
0, 1 0, 2

2 0 2 2 0 2

3 2

1 2 1
, 0

2 2

| , | ,
2 2

| .
3 2

T T T T

z z x z z

T

z z x

Q l z N N M M Q l z N N M M
u l lz u l lz

B B B B B B

Q lD M Ml l
w

B h B

   

 

   
     

  
   

 

 (44) 

Substitution of expressions (44) to relations (38) and (39) gives the completed functions of 

distribution longitudinal and cross movements of the composite console. 

The last expression (44) gives the transverse movement of the lower fiber in the initial cross-

section of the console, which is close in value to its deflection arrow: 

 
1

3 2 2

1 1 1 2
, 0

2 2 2 2

| .
3 2 2

T

z z x

Q l M l Q lD M l
f w

B B hB B
 

 
     

 
 

Analyzing this expression, we can clearly see the components of the pure bending of the console, 

corresponding to the plane sections hypothesis, the component of the transverse shear deformation and 

compression, as well as the component of thermal stresses due to uneven expansion the phases of 

composite. 

5.  Conclusion 

The paper proposes some approach to the reduction of the plane bending spatial problem of composite 

discrete-inhomogeneous beam of arbitrary cross-section to the approximate two-dimensional problem. 

This approach is based on the assumption of absolute stiffness of the phases along the width of the 

beam.This assumption allows us to move from the original spatial problem to the equivalent plane 

problem of bending a multilayer beam of unit width with continuously inhomogeneous layers. The 

research resulted in the necessary ratios for determining the physical and mechanical characteristics of 

the equivalent beam’s layers according to the structure and material properties of the original beam’s 

phases, and a system of static, geometric and physical relationships for the approximate two-

dimensional problem. An example realization of the obtained equations and relations is given. 

Namely, the completed solution of the problem of static bending a composite console of arbitrary 

structure with a load on a free end surface taking into account a uniform change of temperature field is 

presented. 

The results of solving the problem of bending the composite console can be directly used to predict 

the strength and rigidity of such elements. The given system of equations and relations is the starting 

point for the construction of non-classical deformation models and solving a wide range of problems 

concerning the deformation of a direct composite beams. 
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