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The development of composite technologies contributes to their wide introduction into
the practice of designing modern different-purpose structures. Reliable prediction of the
stress-strain state of composite elements is one of the conditions for creating reliable
structures with optimal parameters. Analytical theories for determining the stress-strain
state of multilayer rods (bars, beams) are significantly inferior in development to those
for composite plates and shells, although their core structural elements are most com-
mon. The purpose of this paper is to design an analytical model for bending double sup-
port multilayer beams under a concentrated load, with the model based on the previ-
ously obtained elasticity theory solution for a multi-layer cantilever. The second part of
the article contains examples of the implementation of the model for bending double-
support multi-layer beams under a concentrated load, with the model constructed in the
first part of the article. Using this model, solutions to the problems of bending multi-
layer beams with different types of fixation of their extreme cross-sections were ob-
tained. The resultant relations were approbated using test problems for determining the
deflections of homogeneous composite double-support beams with different combina-
tions of fixation, as well as in determining the stresses and displacements of a four-layer
beam with a combination of a rigid and hinged fixation at its ends. The results obtained
have a slight discrepancy with the simulation results by the finite element method (FEM)
and the calculation by the iterative model for bending composite bars, even for relatively
short beams. In addition, it is shown that the neglect of the shear amenability of layer
materials results in large errors in determining the deflections, and in the case of stati-
cally indefinable beams, reactive forces and stresses. The approach used in the construc-
tion of the model can be extended to the case of beams with arbitrary numbers of con-
centrated forces and intermediate supports, and to calculate multilayer beams with dif-
ferent rigidity of their design sections.

Keywords: multilayer beam, orthotropic layer, concentrated load, deflection, stresses,
displacements.

The mechanics of deformation of composite multilayer plates and shells is the subject of a large num-
ber of fundamental scientific works [1-8]. The deformation of composite rods (bars, beams) is less studied,
although such structural elements are most common.

When a problem of bending composite beams is solved, there is a wide spread use of refined models,
in particular, constructed by an iterative method [9—11]. Such models are quite universal, however, they are
very cumbersome and difficult for practical use at high refinement steps. At the same time, exact solutions for
multi-layer beams, for example [12, 13], are limited in the capability of taking into account different types of
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loads and supports. However, on their basis, we can obtain relatively simple, but fairly accurate applied solu-
tions to typical problems.

In the first part of paper [14], we constructed an analytical simple bending model of a two-support
multi-layer beam under a concentrated load. To construct it, we used a general solution of the theory of elastic-
ity for a multi-layer cantilever beam with a load at the end [12]. The purpose of this part of the paper is to dem-
onstrate the application of the constructed model to the most common schemes for fixing two-support beams
under a concentrated load, as well as approbating the relations obtained in the process of solving test problems.

Main part

The simple bending model of a two-support multilayer beam under a concentrated load, built in the
first part of article [14], comprises: relations (2)—(4) for the components of the main SSS of beam segments,
system of equations (10) for determining the initial parameters of a beam, as well as the dependencies be-
tween the initial parameters of the first and second sections (11). The relations for the SSS components con-

tain 6 static (values of internal force factors N )(C’i),Qg’i),M ) i=1,2) and 6 kinematic (displacement values

vl
uf) sl
cific case of fixation, 6 out of 12 parameters can be specified directly, and the remaining 6 can be determined

,i =1,2) initial parameters, which depend on the type of beam fixation at the ends. In each spe-

by solving the system of algebraic equations (10) [14].

Consider the main stages of the implementation of the model in de- | Z4 M ) F
termining the basic SSS of hinged end, fixed end, and fixed-hinged beams. 10 (== 1

Hinged End Beams. Let us assume that the left hinge support of | Y- ktp" — -
the beam is fixed, and the right one does not limit the longitudinal | ] ' / 7;»
movement of the fixed point (Fig. 1). : s

For this method of fixing the ends of a beam, we can directly !

specify the following static and kinematic conditions for the initial and

final cross-sections: Fig. 1. Scheme of a hinged end beam

MY =Nz, uV=0, wi'=0, M@=0, NZ=0, wi¥=0. (1)

X

The first expression in (1) takes into account that the displacement of the left support hinge relative
to the end stiffness center will cause the appearance of an initial bending moment.

Substituting (1) into (10) [14], we obtain a system of equations for determining the unknown initial
and final parameters

0=NV-F; 0¥ =0V+F; 0=10") Nz +L,F. + M:

! ’ L,F ’F, M
W= Loy S pn_al o bE o ab E abM
bB, 2bB, bB, bB, 2bB,  bB,

>

2
W _ LF, " L F, i LM

2
UV (-l | S UV

Uy =Ny T —0g —7 Up 5 (2)
bB, 2bB, bB, bB, 2bB, bB,
0= h+6Dy ol 4 2w, Lo hly +6D,L, o 1M
6hbB, ' 2bB, "' n *  6hbB, ° 2bB,
Having solved (2) in relation to the unknown static and kinematic parameters, we have
Fz,—LF,-M Fz +LF.-M
Ny =F, o) ==—=m, gf) ==
[ l
ug) — (l_l_ lel Jﬂ_ zhhLF, 4 Z1(lz -1 )M
B, 2B, )b 2bB, 2bB,
o _[ 4 (3z, +h)I* -3D, \F, L +1)+ 2z +1,)F,
» =5 T4 — =1, + 3
B, 3IB, 6/B, b
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N 2617 = 12)- 2,61> - 12)+ 6D

2 M,
6bIB,
o _al?=3D)F mL+b)F, w12 =317 )+ 6D, M
? 3B, b 6bIB, 61B, b’

The initial parameters for the second design segment can be determined by substituting (1) and (3)
into (11) [14].

It should be noted that in this case the problem is statically determinate, and the static parameters can
be determined from the equilibrium conditions of the beam. This allows us to perform an indirect verification
of the correctness of the transformations executed.

By substituting the obtained initial parameters into relations (2)—(4) [14], we can obtain expressions
for determining all the SSS components on the design segments of the beam under consideration.

For example, determine the deflection of the bottom fiber in the cross-section of the load. Substitut-
ing (1) and (3) into the last relation (9) [14], we get

o __hb ([ al+lh)p +(3ﬂ—11 JF +(,—1,)M 4
Wi 3ble( 2 x h b2 |1 (2 1) . 4

In the case of a homogeneous orthotropic beam with a rectangular cross- section, expression (4)
takes the following form:

LL,(1+1,) LLl (41, (E, h’ 4,1,(1, - 1)
(211)2_122 2Fx+ 132 122+__sz_2Fz_ 1232 sy
Ibh*E, b’E |\ I G ! Ibh’E,

XZ

&)

When the beam is under the action of only the normal component F, =—F in the middle section
(L=L= l/2 ), on the basis of (5), we get the relation

FI? 12D
wi = 1-—2 (©6)
48bB, hl

Equality (6) is similar to the well-known expression for the deflection of an isotropic beam, but in

contrast, it contains the component 12D, / (hl 2) that determines the amenability of materials to transverse
shear and compression deformations.

For a homogeneous orthotropic beam with a rectangular cross-section, expression (6) takes the fol-
lowing form:

3 2
ngl) —-_ Fl . 1+ Ex vszxz (ﬁj ) (7)
4AE bh G, )
Fixed End Beam. Simulate the rigid fixation of the beam left end (Fig. 2) similarly to the fixation
of the console in [12, 13], assuming the displacement of the cross-
section extreme points to be zero Zl* M \E [ .
ul) =0, u) =0, wfl)=o0. ® | e — B
In the movable fixation of the beam right end, the longitudi- / * / v
nal displacements are not equal to zero, but their values in the ex- ! 2
treme lower and upper fibers are equal. Then, together with the condi- [
tiop of the absence of longitudinal force and transverse displacements, Fig. 2. Scheme of a fixed end beam
write such values for the final parameters:
NY =0, w2 =u®, WP =o0. )

Taking into account (8) and (9), the determining system of equations (10) [14] will take the form
0=NY-F, 0% =0 +F, M2 =108 + MW+ 1L,F + M,
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ug):LN(l) zl? Q(l)+ 4l M(l)_lex +lezze +lezM

bB, ' 2bB, " bB, " bB, 2bB, DB,

2

o= Ly 2w, 2l LE BhF | 5hM

Uyy =—— — , 10
? pB, ™ 2B, ' bB, ' bB, 2bB, DB, (1
Oz_hl3 +6D,] ol 12 Wy hl,” + 6D, F L,’M .
6hbB, ' 2bB, ' 6hbB, ° 2bB,
The solution to system (10) are 6 unknown parameters.
NO—F. o= (12D, — hl, (1, + 31,))F, — 6hl,M
x1 x° z1 2 2 ’
112D, - ni?)
M=, (6D,1, — hL,1(21, +1))F, — (12D, + hi(21, - 1, )M
’ 112D, - ni?)
Y (6D, — A1), F, + (12D, + (31, — 1)hi )M ’ (an

112D, - hi?)
0% = (12D, = iy (31, + L ))F. +6hLM o) _ hF,
@ 112D, - ni?) © 2 B

Similarly to the previous example, we obtain the relation for the deflection of the bottom fiber of the beam
in the loaded section. By substituting (8) and (11) into the last relation in (9) [14], upon transformation, we get

wil) = (2(1112 yn’+ 6(12D2 - h(l2 +1h ))Dz )ZIZZFZ +30°(1 - L)L)’ M (12)
; 6B,bhI(12D, — hi®) :

For the case when only the normal component F, =—F in the middle cross-section ([, =1, =1/2)
acts on the beam, relation (12) can be reduced to

3
O 1—48132 . (13)
1926B,\  hi

As in the previous example, relation (13) is similar to the well-known expression for the isotropic
beam deflection and also contains a clarifying component.
For a homogeneous beam with a rectangular cross-section, on the basis of (13), we have

3 2
w___F E.-v.G.(h
wil) =144 T D 14
2 16bh3Ex[ G I (9

XZ

When comparing (7) and (14), it can be noted that in the case of
the rigid fixation of beam ends, with all the parameters being the same, the
influence of the material amenability to transverse shear and compression
deformations on the deflections will be 4 times higher.

Fixed-Hinged Beam. Consider the case when the beam left end is
rigidly fixed, and the right one is fixed with a hinged movable support ]
(Fig. 3).

Such types of beam end fixation will be described by the follow-
ing values of the initial and final parameters:

Fig. 3. Scheme of a fixed-hinged
beam

w =0, ul=0, wll=0, N9=0, M¥=0, wi=o0. (15)

y

Substituting (15) into system (10) [14] and solving the equations obtained, we determine the un-
known parameters
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0w 6D, + k=32l F, + 300 =12 M
N =Fo Qi === 21(3022—/112) 2

20— P =17+ (2 =317 )+ 60,
yi— 2 ’
2(3D, — ni?)

0k = 3hl,(L, + )M +(6D, — hl, (3L, + 21,)),F,
2 213D, - hi?)

2

; (16)

o (2D, —ahP ), (i =6D,)bF,~ (3 =Dl +12D,)e,M
2" 43D, —h1?) ! 4bB, (3D, — hi?)

>

o (2D, —an)F, (0] =6D,)a s F, = (31, = Dhl +12D, )M
* 7 4bB,3D, - n1?) ! 4bB,(3D, - n*) '

The relation for the deflection of the bottom fiber of a beam in the loaded cross-section will be ob-
tained in the form

o GlL)2 +126D, - h( + 10,0, . Kl -21,2)-6D,
Wy = > LF, + =L LM a7
12B,bhl(3D, —hl”) 4B,bl(3D, —hl™)
For the case when only the normal component F, =—F acts on the beam in the middle cross-section
(1, =1,=1/2), (17) can be reduced to

3 2
ngl) _ Fl - 12D22 N 9hl . (18)
48bB,\  hI*> 163D, —hi?)

For a homogeneous beam, using (18), we have

3 2 2\
PN T P I N O
4DI’E G, N 16 4\ G,, N

Similarly, we can obtain solutions to other problems of bending double-support multi-layer beams with
a more complex description of different types of beam end fixations, which takes into account, for example,
their amenability, draft or inaccuracy of installation.

As an example of the implementation of the relations obtained, we consider the results of their use in
determining the SSS components of homogeneous and four-layer beams of the #xb =100x15 mm rectangular
cross-section.

Model Approbation

Homogeneous beam. In this case, we consider carbon-fiber beams (E,=142.8 GPa, G,=5.49 GPa,
v.=0.32), loaded with the force F,=-17500 N in the middle section (/, =1, =1/2) with different fixation methods.

For the indicated initial data based on relations (7), (14), and (19), the deflection of the bottom fiber
of the beam in the loaded section was calculated. The results of the calculation of beams with different
lengths are summarized in the table below.

For comparison, the table shows the results of FEM simulation using Plate-type elements, the calcu-
lation results using the flat section hypothesis (G,, =, v, =0), as well as the results of the calculation us-
ing the iteration model of the first approximation [10].

The data in the table show a slight discrepancy between the results of calculation using the obtained
relations, FEM, and iteration model, which decreases with increasing the relation l/ h . At the same time, the
use of the hypothesis of flat sections leads to significant errors in determining the deflections, from 22 to
80%, depending on the type of beam end fixation.

The results of calculating the beam bottom fiber deflection, mm
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Beam length | Solution obtained | FEM modeling | Hypothesis of flat cross-sections | Iteration model

Hinged end beam (Fig. 1)

I=5h -0.5177 -0.5399 -0.2553 -0.5516
[=10h -2.5672 -2.6183 -2.0425 -2.6576
Fixed end beam (Fig. 2)
I=5h -0.3262 -0.3216 -0.0638 -0.3377
[=10h -1.0354 -1.0757 -0.5106 -1.1033
Fixed-hinged end beam (Fig. 3)
I=5h -0.4034 -0.4085 -0.1117 -0.3964
[=10h -1.4877 -1.5414 -0.8936 -1.4973
Four-layer beam. 1t is accepted that the [ =10/ four-layer beam has z
a combined end fixation (Fig. 3) and is loaded with the force F,=-17500 N in =i :
the section x =1/, =4h. The structure and dimensions of the beam cross- - i : b
section are shown in Fig. 4. EI X "‘5‘\ il
For the materials of the layers, the following values of the elastic P
characteristics are taken: = L2
— P, (aluminium alloy) — E! =70 GPa, Gl =26.9 GPa, v =0.34; g e
m e
— P, (wood) — EP1=12.1 GPa, G'=1.21 GPa, vII=0.49; R = s
— P, (fiberglass) — EF1=36.8 GPa, Gl=4.5 GPa, vl =0.351; o A
' ‘ ek I
— P, (black-reinforced plastic) — E*! =142.8 GPa, GI¥' =5.49 GPa, vP1 =0.32. == A
The position of the stiffness center and characteristics of the cross- il ’}/. !
sectional stiffness are obtained using the relations given in [14] T i
25, =5841 mm, B, =—5298,64-10° N-m, D, =-347231-10° m’. b=15 '

Using relations (2)—(4), (11) from [14] and relations (15) and (16)
obtained above, we have expressions for the SSS components of the calcu-
lated beam segments. These expressions were combined into general ex-
pressions for the entire beam according to (6) [14].

Fig. 4. Scheme of the beam cross-

section (dimensions in mm)

The stress distribution in the cross-section x =/ for a multi-layer beam is shown in Fig. 5, which also
shows the distribution of the longitudinal modulus of elasticity. The dashed line shows the stresses obtained using

the hypothesis of flat cross-sections (G,, =0, v, =0).

The maximum values of the

stresses ¢, in the lower and upper layers ZoiSZ l ! ——Zo’;’oz —r /Z(’m_
diffef from those obtained in the.FEM cal- 1 } 4 /,! i
culation by 6 and 0.8%, respectively. The | 0.02 —0:02 i 0:029 T, |
use of the hypothesis of flat cross-sections 1T uE ,‘GPa IGY“X:O MPa | MPa
leads to an increase in stress values by 18 011740301100 78040 0] 140 801120 T 1 o
and 26%. . _ -0.02 Hdos ; 0:021

This can be explained by an in-
crease in the calculated value of the support | g 04}|d \\ L 0:0H
reactive moment in the rigid fixation when _i ‘// \\{

the hypothesis of flat cross-sections is used.
The obtained relations give the value of the
bending moment M, =3043 N-m, and the

application of the hypothesis of flat cross-
sections leads to its increase by 10.4% to
M ; =3360 N-m.

Separate  displacement

distribu-

Fig. 5. Graphs of the stress distribution in the cross-section near the
rigid fixation
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tions are shown in Fig. 6, where the dashed

-3
line shows the displacements obtained us- ,‘Lzo’,ni e ‘WL:“"’mXIO X m
ing the hypothesis of flat cross-sections. X‘.\" 0 \\?]2 o4 | ols o8 Ao

The graph for the longitudinal dis- N N ,/’
placements (Fig. 6, a) shows the curvature \ ul_,mx107 -l \‘\ g
of the cross-sections under the action of the | ToHToN o3 ol \ S Zgit /
transverse force, which cannot be predicted | [ P N -2 \ /
using the hypothesis of flat cross-sections. THTY \ /
The comparison of the obtained value of | [ 104 ‘{‘\ . ,
the longitudinal displacements in the ex- ‘\\ \ /
treme fibers of the beam with the FEM v

a) b)

Fig. 6. Graphs of the distribution of displacements:
a — longitudinal; b — transverse

simulation results shows a small difference (up to 7%). However, near the rigid fixation and the loaded section,
the difference from the results of the FEM calculation increases.

The deflection of the bottom fiber of the beam (Fig. 6, b) in the loaded section according to the ob-
tained relations was 3.61 mm, which is only 1.7% higher than the value obtained by FEM simulation

(wloy -, =3.55 mm). At the same time, the application of the hypothesis of flat sections leads to a de-
crease in the deflection by 57%, up to wl,_; .., =1.52 mm.

Using the obtained analytical rela- .
tions for the displacements, an after- ’ 1

(Fig. 7). For comparison, Fig.7,b shows | -o.10 N
the shape of an after-deformation beam \L/
constructed based on the relations for the | -020 ‘
displacements, which are obtained using zm
the hypothesis flat cross-sections.

| | ' x,m
The fracture of the deformed fibers X‘— 5 )
of the beam in the loaded section in \\_” i
Fig. 7, a and the shift of the maximum de- | ' T —
flection of the beam result from both the
simplification of the kinematic conditions | Fig. 7. Beam shape after deformation (displacements increased 40-fold):
for the joint deformation of the design seg- a — according to the constructed model; b — taking into account the

ments and rigid fixation. It should be noted hypothesis of flat cross-sections

deformation beam shape is constructed, - / sl
with the displacements increased 40-fold \ - 04 0 3
~ /

\)

b)

that such a distribution of displacements, in general, turns out to be much closer to the results of the calcula-
tion by FEM and the iterative model than that obtained using the hypothesis of flat cross-sections (Fig. 7, b).
The picture of displacement distribution can be clarified by improving the relevant kinematic conditions.
However, this will obviously lead to a complication of the final relations.

Conclusions

Thus, on the basis of the constructed simple bending model of double-support multi-layer beams un-
der a concentrated load, particular solutions are obtained for the main SSS of beams with different combina-
tions of fixation of their extreme sections.

The obtained relations were approbated when we solved the test problems of bending homogeneous
orthotropic and four-layer beams with different types of beam end fixation. The comparison of the obtained
results for individual SSS components with the results of FEM simulation and calculation by an iteration
model shows good convergence with the exception of the zones near the loaded and fixed cross-sections. At
the same time, the use of the hypothesis of flat cross-sections leads to significant errors in the determination
of displacements, and for statically indefinable problems, also internal force factors and stresses.
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The demonstrated approaches to solving bending problems can be used without difficulty in the

process of constructing solutions to more complex applied problems of bending multilayer beams with vari-
ous combinations of loading and fixation.
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OcHOBHUI HaNPy KeHO-1e(OPMOBAHUIA CTAH IBOXONOPHUX 0araToiapoBux 0a/10K MiA i€
30cepelKeHoro HapaHTakeHHs. YacTuna 2. Peasizaunis MoaeJi Ta pe3yibTaTH po3paxyHKy

Kopansuyk C. B., I'opuk O. B.
IlonTaBchbka JeprKaBHA arpapHa akazemis, 36003, Vkpaina, m. [Tonrasa, Byn. CkoBopoau, 1/3

Possumox mexuonoziii komnosumie cnpuse ix WUPOKOMY BNPOBAONCEHHIO 8 NPAKMUKY NPOEKMYBAHHA CYYACHUX

KOHCMPYKYitl pi3H020 npusHaueHHs. [Jocmosipue npocHO3y8aHHs HANPYHCEHO-0eOPMOBAHO20 CINAHY KOMROUMHUX eleMe-
HMi6 € OOHIEI0 3 YMO8 CIMBOPEHHS HAOTUHUX KOHCMPYKYIL 3 ONMUMATbHUMU napamempamu. Anamimuuni meopii GusHauenHs
HANpYsHCceHo-0eopmoeanozo cmary 6a2amouaposux cmpudxichie (opycis, 6aio0K) 3HAYHO NOCYRAIOMbCA ) PO3BUMKY Meo-
DIAM 07151 KOMROZUMHUX NAUM i 0O0NOHOK, X0Ua CIPUIICHES] efleMeHmy KOHCMPYKYill € Hannowuperiuumu. Memoro oanoi
pobomu € noby0osa aHanimuyHoi Mooeni 8usUHy 0B0XONOPHUX OA2aAMOUAPOsUX OAIOK Ni0 i€l 30CePedAHCeH020 HABAHMA-
JICEHHSL HA OCHOBI OMPUMAHO20 paHiule po38’sA3Ky meopii NpyscHocmi 01 bazamowlaposoi Koucom. Y opyeit yacmumi
cmammi HasedeHi NPUKIAOU peanizayii Mooeni 3euny 080XONOPHUX 6a2amouaposux 6aioxk nio Oicio 30cepedrHceHo20 HasaH-
mabsicents, NoOyOo8aHoi y nepulill Yacmuni cmammi. 13 8UKOPUCIAHHAM MOOeli OMPUMAHO PO38'A3KU 3a0ay 32UHy bazamo-
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JMHAMIKA TA MILIHICTb MAIIINH

Waposux 6anok 3 PisHUMU CNOCOOAMU 3aKPINJIeHHs. IX KpatHix nepepizie. Ompumani cniggiOHOUEeHHs anpoO06aHi Ha Mecmo-
BUX 300A4AX BUSHAYEHHSI NPOSUHIE OOHOPIOHUX KOMNOZUMHUX OBOXONOPHUX OANOK 3 PI3HUMU KOMOIHAYIAMU 3aKpinieHsb, a
MAKOIC Ni0 4ac 6USHAYEHHs HANPYICEHb | Nepemilyenb YOmupumaposoi OAKu 3 HCOPCMKUM I WAPHIPHUM 3aKPINAEHHAM
mopyie. Ompumani pe3yibmamu Maroms He3HAYHy PO3DINCHICHL 3 Pe3VIbMAMAMU MOOENO8AHH MEMOOOM CKIHYEHHUX
elleMenmia I pO3paxyHKy no ImepayiuHit Mooesi 32uHy KOMROUMHUX Opycis, Hasimb O/ 6IOHOCHO KopomKux banok. Kpiv
MO020, NOKA3AHO, WO HEXMYBAHHS 3CY8HOI NIOOAMAUBICIIO MAMEPIANIE Wapie npu3eoo0ums 00 GeIUKUX NOXUOOK nid uac
BU3HAYEHHS NPOSUHIB, A Y PA3i CIMAMUYHO HEBUSHAYEHUX OANIOK — MAKOIC PEAKMUSHUX 3YCUIb | HANPYIHCEHb. 3acmocosanuil
nio yac no6y008u mMooesi nioXio MONICHA POSUWUPUMU HA BUNAOOK OANOK 3 6Y0b-SKOI0 KUILKICIIO 30CEPe0NHCeHUX CUL [ npo-
MIDICHUX ONOP Ma 0I5 PO3PAXYHKY OaA2amomaposux 6anoK 3 pisHUMU HCOPCIMKOCHAMU PO3PAXYHKOBUX OLISHOK.

Kntouogi cnosa: bacamowaposa 6anka, opmomponHuil wiap, 30Cepeodicene HABAHMANCEHHS, HANPYJCEHHs, nepe-
MIWEHHSL.
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