Influence of parameters of omelets' treatment process with high pressure on their microbiological safety

Valeri SUKMANOV¹, Viacheslav PADALKA¹, Anatoly PALASH²

¹ Poltava State Agrarian Academy (PSAA), Poltava, Ukraine, e-mail: <u>sukmanovvaleri@gmail.com</u>

² Poltava College of Food Technologies – NUHT, Poltava, Ukraine, e-mail: <u>Apalash48@gmail.com</u>

Abstract: The article contains the results of researches on dependencies of omelets microbiological contamination (E. coli, Pseudomonas fluorecens, Paenibacillus polymyxa and Listeria seeligeri) with various fillers on the parameters of their high pressure treatment process (HP) (pressure value, temperature and process duration). The fact that it is reasonable to use kinetic models of the second order to describe the process of colon bacillus (Escherichia coli) inactivation is proposed for the first time and is experimentally established. Dependences of changes in the constants of inactivation rate ln (k1) and ln (k2) on the pressure for kinetic models of the second order were obtained in research. In the article were obtained values of omelet microbial contamination, treated by HP E. coli, Pseudomonas fluorecens, Paenibacillus polymyxa and Listeria seeligeri at their long storage.

Key Words: omelets with fillers, storage period, microbiological safety, high pressure, temperature.

I. Introduce

Hen eggs are one of the most valuable human food products and are used in the preparation of a large number of dishes, among which the leading place is occupied by omelets. Unfortunately, this product is not intended for long-term storage and it is prepared at the public catering facilities as needed. At the same time, taking into account its high nutritional value, this product [1,2], provided that its high nutritional and consumer properties are ensured at a long-term storage period, can be recommended for use in expeditions and tourist trips, hard-to-reach regions of the country, at the formation of strategic reserves of the armed forces and Navy, as well as at the eggbreaking plants, food industry and public catering facilities.

The most appropriate for the development of production process of mixed omelets with various fillers of long-term storage period is to use the HP technology, which provides their microbiological safety of various food products [3-5] during the storage while preserving the entire enzymic and vitamin complex. In addition to the sterilizing effect high pressure [6-9] has positive effect on various physical and chemical properties of liquid egg [10], which significantly increases both the scientific and practical value of researches on the effects of HP on egg and omelets with different fillers.

Authors of numerous researches have studied the

influence of HP on various representatives of microbial flora both liquid egg in whole and its separate components [11-22]. Researches that consider the inactivation of microorganisms by HP in complex matrices [21] are of interest, as well as the study of the synergetics of the combined effects of HP, ultrasound and other factors on the processed product [22-24]. Unfortunately, there are almost no researches that studied the effects of HP on omelets with different fillers.

The aim of the research: is to determine the dependence of indicators of microbiological safety in the process of long-term storage of omelets with various fillers on parameters of its high pressure treatment process.

The object of research is high pressure treatment process of omelets with various fillers.

The subject of research – the technological parameters of high pressure treatment process and microbial indicators of omelets with various fillers.

II.Methodology of research

In order to study the influence of HP on egg products on the basis of liquid hen egg there was developed the process of producing omelets with cheese, bacon and fried champignons of long-term storage. This process lies in mixing liquid egg with grated or finely chopped cheese (or other ingredients), xanthan gum, which gives the formstable ability to the finished product, then adding water or milk, spices (salt, pepper), and then the obtained mixture is packed in a sealed elastic packing material, it is heated, then it is put into the working chamber with HP installation. The obtained product in the sealed package is intended for longterm storage, and that's why the study of its microbiological safety during the storage is the priority while determining the rational parameters of both the process of its production and the storage modes of the produced product.

The treatment of omelet samples was conducted at a high-pressure unit (HPU) [25] in the range of process parameters: mixture preheating at the 85- 95° C, pressure 650-750 MPa, treatment time -up to 8 min.

As a result of the fact that the product that is loaded into the working chamber of HP has a temperature of $85-95^{\circ}$ C, and the subsequent increase in pressure in the working chamber, the temperature, at which carried out the high pressure treatment process was equal to $110-130^{\circ}$ C.

In order to perform the experimental studies on evaluation of microbiological sterility of food samples treated with HP, there was used E. coli culture, which was prepared as follows.

E. coli, which was discovered in one of the samples of liquid hen eggs and relegated to the group K12DH5 α , was carried to 20ml of standard broth and cultivated in vibrating incubator during 24 hours at 30°C. After 24 hours of incubation, 50ml of the suspension was carried to 20ml of fresh broth and the cultivation continued for another 24 hours. Subsequently, 1ml of suspension of microorganisms with E. coli were grafted to 100ml of a whole egg, which was used in the production of omelet. The initial concentration of E. coli was approximately 108 CFU / ml. The initial concentration of other microorganisms used in microbiological studies was approximately 107 CFU / ml.

The main pathogenic microorganisms found out in pasteurized liquid eggs are: Alcaligenes, Bacillus, Proteus, Escherichia coli, Pseudomonas and Grampositive cocci.

The procedure of experimental researches on the study of influence of parameters of omelet high pressure treatment process consisted of the following stages:

1. Formation of a Bank of microbiological cultures for their subsequent introduction into omelet samples;

2. Preparation of omelet samples with cheese, bacon and champignons according to the technology and introduction of long-prepared microbiological culture;

3. Omelet samples packaging in sterile sealed

containers and their treatment at HPU;

4. Microbiological analysis of omelet samples, both directly after the HP treatment, and during their long-term storage at $+4\pm0.5^{\circ}$ C.

Microbiological analysis of omelet samples treated by HP, was performed using the standard methods according to ISO-4833: 2003 IDT (Microbiology of food and animal feeding stuffs -Horizontal method for the enumeration of microorganisms - Colony-count technique at 30 degrees C), ISO-21528-2004 (ISO 21528-1:2004 «Microbiology of food and animal feeding stuffs --Horizontal methods for the detection and enumeration of Enterobacteriaceae - Part 1: Detection and enumeration by MPN technique with pre-enrichment), ISO 4833:1991 «Microbiology -General guidance for the enumeration of microorganisms - Colony count technique at 30 degrees C», ISO-6579:2002-07, GOST 10444.15-94 «Food Products. Methods for determination the quantity of mesophilic aerobic and facultative anaerobic microorganisms» and GOST 10444.12-88 «Food products. Method for determining yeast and fungi», «Unified sanitary and epidemiological and hygienic requirements for goods that are subject sanitary and epidemiological surveillance (control) ».

Taking into account the fact that in omelet production are used several ingredients, including milk that has not undergone the thermal sterilization, there were analyzed safety requirements for each component of omelet.

In addition to mentioned above indicators, there was studied the influence of HP on three species of psychrophilic bacteria: Listeria seeligeri (Listeria innocua), Pseudomonas fluorecens, Paenibacillus polymyxa, which are often the cause of food spoilage during their storage in refrigerated condition [1]. The indicator "Coliform bacteria" is selected in accordance with the accepted international nomenclature, it is almost identical to the indicator of "Coliforming bacteria". During the study were taken into account both citrate-negative and citratepositive variants of Coliform bacteria, including the following _ Escherichia, Klebsiella. genus Enterobacter, Citrobacter и Serratia.

All of the mentioned above culture samples were obtained as a result of inoculation and subsequent dilution of microbial flora samples to the required concentration, detected and identified during various microbiological analyses.

II. Materials and methods

Inactivation of microorganisms under HP, as well as denaturation of proteins, is often described by kinetic equations of the first order, as a result of which the logarithm of concentration of microorganisms that survived after pressure treatment decreases linearly with the increase in treatment time t as -kt, where k is the constant of inactivation rate.

$$-\frac{dN}{dt} = k \cdot N \tag{1}$$

where N is the number of viable organisms; k is the constant of inactivation rate.

Integral equation (1) with taking into account initial conditions, $N=N_0$ in t=0 was presented as:

$$\ln(\frac{N}{N_0}) = -k \cdot t \tag{2}$$

Equation (2) offers linear dependence of N on t on a semi-logarithmic scale and was expressed using common logarithm:

$$\ln(\frac{N}{N_0}) = 2.303 \cdot \log(\frac{N}{N_0})$$
(3)

The constant of inactivation rate (k) is the most commonly used concept to describe the thermal inactivation of microorganisms.

In literature, there are often data with significant deviations from linearity, which are usually described by a combination of two reactions of first-order as two-phase kinetics with different inactivation rates [19,20]. Two-phase kinetics is common for both vegetative and spore forms of bacteria. In such cases, there is a retardation in the fall of the logarithm of concentration over time, the rate of fall for small and large t is equal to k_1 and k_2 , respectively, and, most often, $k_1 > k_2$. Such form of inactivation curve indicates the existence of a small part of population the increased resistance to HP effect.

Similar studies were carried out for omelet samples with bacon and champignons, as a result of which were determined the values of parameters of omelet treatment process with high pressure, providing microbiological safety of the product at long storage:

Analysis of experimental data on inactivation of Escherichia coli have shown that in order to describe the kinetics of inactivation of E. coli at the given process parameters, it is reasonable to apply twophase model of the first order. This model consists of two parts that follow the independent kinetics of first order (Fig. 1).

The surviving microorganisms during t are the sum of separate parts:

$$N(t) = N_1(\tau) + N_2(\tau)$$
 (4)

The analytical solution of the mentioned above

equation is presented as:

$$N(t) = N_0(f \cdot e^{-k_1 \cdot t} + (1 - f) \cdot e^{-k_2 \cdot t}) \quad (5)$$

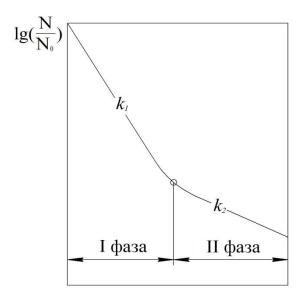


Figure 1.. Typical curve of two-phase inactivation

where N_0 is the initial number of microorganisms and f is the initial proportion of the first part (N_{01}/N_0) .

Each part of this inactivation model is expressed as:

$$\frac{dN_1}{dt} = -k_1 \cdot N_1(t) , N_1(0) = N_{01}$$
(6)

$$\frac{dN_2}{dt} = -k_2 \cdot N_2(t) , \, N_2(0) = N_{02}$$
(7)

where N_1 and N_2 are the number of microorganisms in the first and second parts, τ is the treatment time;

 k_1 and k_2 are the constant of inactivation rate.

Dependence of the constants of inactivation rate on the pressure was analyzed by the Arhenius-type model. Dependence of pressure and the constant of inactivation rate k is described by the following equation (8):

$$\left(\frac{\partial \ln k}{\partial P}\right)_T = -\Delta V * / RT$$

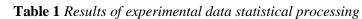
where *k* is the constant of inactivation rate of first order in s⁻¹, P is the pressure in MPa, ΔV^* is the apparent volume of activation in m³ mole⁻¹, R is the gas constant 8,314 ×·10⁻⁶ ·m³ ·* MPa mole⁻¹·K⁻¹, T is the temperature in Kelvin degrees, K.

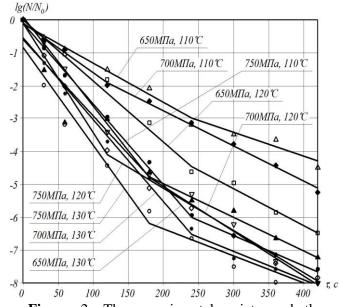
Equation (8) shows that the dependence of ln (*k*) on pressure at the constant temperature is described by inclined line $-\Delta V^*/RT$.

The program STATISTICA V5.5A was used for kinetic analysis of Escherichia coli inactivation process.

Due to the fact that kinetic model of the second order can't be adequately evaluated by the linear model, there was performed the nonlinear estimation using piecewise linear regression and were obtained the values of points of discontinuity of the secondorder curves (table. 2).

As a result of statistical analysis of experimental data the E. coli inactivation process was described by the following function for all values of its parameters


$$\begin{cases} y = a + c \cdot (x - b) & x < b \\ y = a + d \cdot (x - b) & x > b \end{cases}$$
(9)


III. Results and discussion

The numerical values of the model coefficients for different values of process parameters and statistical characteristics of these dependencies are represented at the Table 1. The confidence interval is 0.95.

Figure 2 shows the experimental points and the piecewise linear dependencies of decrease in the relative concentration of E. coli in the samples of omelet with cheese.

Table 1 Results of experimental data statistical processing												
Pressure MPa	а	С	d	<i>b</i> point of discontinuity	\mathbb{R}^2	F stat	Str. err					
Temperature 110°C												
650	-3,005	-0,0121	-0,0074	240	0,987	188,9	0,185					
700	-1,877	0,0152	-0,0108	120	0,99	772,1	0,106					
750	-4,476	0,0224	-0,0101	180	0,94	39,5	0,93					
Temperature 120 ^o C												
650	-4,341	-0,0183	-0,012	240	0,99	319,94	0,219					
700	-3,498	-0,0304	-0,015	210	0,99	624,38	0,19					
750	-4,157	-0,0346	-0,013	120	0,99	732,61	0,17					
Temperature 130 ^o C												
650	-6,913	-0,0223	-0,0053	300	0,99	315,94	0,262					
700	-6,543	-0,0255	-0,0085	240	0,99	249,24	0,303					
750	-6,092	-0,0296	-0,0093	180	0,96	162,72	0,579					

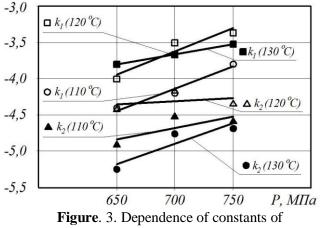


Figure 2. The experimental points and the piecewise linear dependencies of decrease in the relative concentration of E. coli in the samples of omelet with cheese

Mathematical description of E. coli inactivation process at different values of process parameters allowed to obtain and analyze the dependences of constants of inactivation rate ln (k_1) and ln (k_2) on pressure for the functions described by kinetic models of the second order.

Graphical interpretation of dependence of the reaction rate constant value on the process parameters (pressure and temperature) is presented in Fig. 3 and it allowed to analyze the dynamics of reaction rate constant at different phases of the process.

ln(k)

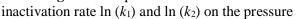


Table 2 shows the results of experimental researches on the influence of parameters of omelet treatment process with high pressure on provision of microbiological sterility in respect of such microorganisms as mesophilic aerobic and facultative anaerobic microorganisms (QMAFAnM); pathogenic microorganisms, including Salmonella; psychrophilic bacteria *Listeria seeligeri (Listeria innocua), Pseudomonas fluorecens, Paenibacillus polymyxa.*

Due to analysis of presented results it can be stated that these process parameters allow to provide the necessary level of microbiological safety of the product.

Table 2 Values of microbial contamination of omelet samples at different values of parameters of treatment

 process

			1	00000						
Process parameters			Coliform	pathogenic,	S.aureus	Proteus	QMAFAnM			
temperature,	pressure	Treatment	bacteria in	incl.	in 1,0g	in 0,1g	CFU/g			
⁰ C	MPa	products,	1,0g	Salmonella in	_	_	_			
		S	_	25g.						
Omelet with cheese										
121	700	420	n/d	n/d	n/d	n/d	n/d			
Omelet with bacon										
121	700	420	n/d	n/d	n/d	n/d	n/d			
Omelet with champignons										
121	700	420	n/d	n/d	n/d	n/d	n/d			
		•	•	•	-	•	•			

• * n/d-not detected

Thus, for the first time we obtained functional dependences of changes in the relative concentration of Escherichia coli at the omelet treatment with HP at different process parameters. For the first time there was experimentally established and explained the fact that at different parameters of the treatment process it is reasonable to use kinetic models of the second order. Dependences between the changes in the constants of inactivation rate $\ln (k_1)$ and $\ln (k_2)$ and the pressure for kinetic models of the second order were obtained in research. In the article were obtained values of omelet microbial contamination with E. coli depending on parameters of omelet high pressure treatment process and here also were determined the technological parameters of the process, providing microbiological safety of omelet against Pseudomonas fluorecens, Paenibacillus polymyxa and Listeria seeligeri.

To study the dynamics of indicators of microbiological safety of omelet samples with cheese, bacon and champignons, treated by HP in the process of its storage were used the samples, produced with the process parameters: $700MPa - 121 \ ^{0}C - 6$ min. Studied samples were stored in the sealed packaging, in which they were treated with HP at the temperature $4\pm0.5 \ ^{0}C$ with the relative humidity from 85% to 88%. Replication of measurements at this point is three times. Microbiological parameters were monitored each 30 days of storage.

Analysis of microbiological safety by 5 previously mentioned indicators showed that during 6 months of storage in omelet samples were not detected: Coliform bacterias in 1.0 g, pathogenic, including *E. coli* in 25g., *S.aureus* in 1.0 g, *Proteus*

in 0.1 g. At the 5-th and 6-th months of storage were detected QMAFAnM (Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms) in the amount of 1×10^5 and 1×10^4 CFU/g, which is significantly lower than permissible values for this indicator. Psychrophilic bacteria of the species *Listeria seeligeri (Listeria innocua), Pseudomonas fluorecens u Paenibacillus polymyxa* also were not detected.

IV. Conclusions

The conducted researches allowed to determine the dependence of omelet microbial contamination (E. coli, Pseudomonas fluorecens, Paenibacillus polymyxa u Listeria seeligeri) on the parameters of their high pressure treatment process (pressure value, temperature and process duration). The fact that it is reasonable to use kinetic models of the second order to describe the process of colon bacillus (Escherichia coli) inactivation is proposed for the first time and is experimentally established. Dependences of changes in the constants of inactivation rate $\ln (k_1)$ and $\ln (k_2)$ on the pressure for kinetic models of the second order were obtained in research. In the article were obtained values of omelet microbial contamination with different fillers (cheese, bacon, fried champignons), treated by HP E. coli. Pseudomonas Paenibacillus fluorecens, polymyxa и Listeria seeligeri at their long storage.

References

1. Conway A. 2018a. Egg production. Stat. Ref. Poult. Exec. [Internet]:28–30. Available from: http://www.poultrytrends.com/#&pageSet=0. Accessed Jan, 2019.

- Conway A. 2018b. Egg consumption. Stat. Ref. Poult. Exec. [Internet]:66–69. Available from: http://www.poultrytrends.com/#&pageSet=33. Accessed Jan, 2019.
- V. Dhineshkumar, D. Ramasamy and M. Siddharth. High pressure processing technology in dairy processing: A review. Asian J. Dairy & Food Res., 35 (2) 2016 : 87-95.
- Edwin Fabian Torres Bello, Gerardo González Martínez, Bernadette F. Klotz Ceberio, Dolores Rodrigo and Antonio Martínez López. High Pressure Treatment in Foods. Review. Foods 2014, 3, 476-490.
- R. Sevenich, C. Rauh, D. Knorr. A scientific and interdisciplinary approach for high pressure processing as a future toolbox for safe and high quality products: A review. Innovative Food Science and Emerging Technologies 38 (2016) 65–75.
- Cheftel JC. 1995. Review: High-pressure, microbial inactivation and food preservation/Revision: Altapresion, inactivacion microbiologica y conservacion de alimentos. Food Sci Technol Intl 1:75–90.
- M.F. Patterson. Microbiology of pressure-treated foods. A REVIEW. Journal of Applied Microbiology 2005, 98, 1400–1409.
- Yuste J, CapellasS M, Pla R, Fung DYC, Mor-Mur M. 2001. High pressure processing for food safety and preservation: a review. J. Rapid Methods Autom. Microbiol 9:1–10.
- Mehrdad Niakousari, Hadi Hashemi Gahruie, Maryam Razmjooei, Shahin Roohinejad, Ralf Greiner. Chapter 5. Effects of Innovative Processing Technologies on Microbial Targets Based on Food Categories: Comparing Traditional and Emerging Technologies for Food Preservation. Innovative Technologies for Food Preservation. Innovative Technologies for Food Preservation. Inactivation of Spoilage and Pathogenic Microorganisms. 2018, Pages 133-185.
- Aguilar JM, Cordobés F, Jerez A, Guerrero A. 2007. Influence of high pressure processing on the linear viscoelastic properties of egg yolk dispersions. Rheol Acta 46:731–40.
- Nassim Naderi, James D. House, Yves Pouliot, and Alain Doyen. Effects of High Hydrostatic Pressure Processing on Hen Egg Compounds and Egg Products. Comprehensive Reviews inFood Science and Food Safety.Vol.16, 2017. P 707-720.
- Andrassy E, Farkas J, Seregély Z, Dalmadi I, Tuboly E, Lebovics V. 2006. Changes of hen eggs and their components caused by non-thermal pasteurizing treatments II. Some non-microbiological effects of gamma irradiation or hydrostatic pressure processing on liquid egg white and egg yolk. Acta Aliment 35:305–18.
- 13. Huang E, Mittal GS, Griffiths MW. 2006. Inactivation of Salmonella enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound. Biosyst Eng 94:403–13.
- 14. Işiker G, Gurakan GC, Bayindirli A. 2003. Combined effect of high hydrostatic pressure treatment and hydrogen peroxide on Salmonella

Enteritidis in liquid whole egg. Eur Food Res Technol 217:244–8.

- Rajan S, Pandrangi S, Balasubramaniam VM, Yousef AE. 2006. Inactivation of Bacillus stearothermophilus spores in egg patties by pressureassisted thermal processing. LWT – Food Sci Technol 39:844–51.
- Ponce E, Pla R, Sendra E, Guamis B, Mor-Mur M. 1999. Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure: comparative study in selective and nonselective media. Food Microbiol 16:357–65.
- Juliano P, Li B, Clark S, Mathews JW, Dunne PC, Barbosa-Cánovas GV. 2006a. Descriptive analysis of precooked egg products after high-pressure processing combined with low and high temperatures. J Food Qual 29:505–30.
- Lai KM, Chuang YS, Chou YC, Hsu YC, Cheng YC, Shi CY, Chi HY, Hsu KC.and others. 2010. Changes in physicochemical properties of egg white and yolk proteins from duck shell eggs due to hydrostatic pressure treatment. Poult Sci 89:729–37.
- Lee DU, Heinz V, Knorr D. 1999. Evaluation of processing criteria for the high pressure treatment of liquid whole egg: rheological study. LWT – Food Sci Technol 32:299–304.
- 20. Lee D, Heinz V, Knorr D. 2001. Biphasic inactivation kinetics of escherichia coli in liquid whole egg by high hydrostatic pressure treatments. Biotechnol Prog 17:1020–5.
- E. Georget, 1, R. Sevenich, K. Reineke, A. Mathys, V. Heinz, M. Callanan, C. Rauh, D. Knorr. Inactivation of microorganisms by high isostatic pressure processing in complex matrices: A review. Innovative Food Science and Emerging Technologies 27 (2015) 1–14.
- 22. Pina-Pérez MC, Silva-Angulo AB, Muguerza-Marquinez B, Aliaga DR, López AM. 2009. Synergistic effect of high hydrostatic pressure and natural antimicrobials on inactivation kinetics of Bacillus cereus in a liquid whole egg and skim milk mixed beverage. Foodborne Pathog Dis 6:649–56.
- 23. Lee DU, Heinz V, Knorr D. 2003. Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the microbial inactivation in liquid whole egg. Innov Food Sci Emerg Technol 4:387–93.
- 24. Monfort S, Ramos S, Meneses N, Knorr D, Raso J, Álvarez I. 2012. Design and evaluation of a high hydrostatic pressure combined process for pasteurization of liquid whole egg. Innov Food Sci Emerg Technol 14:1–10.
- 25. Sukmanov V. O., Sokolov S. A., Golovinov V. P., Dekan O. O., Sabirov O. V. Development of an automated experimental complex for products treatment with high pressure. "Equipment and technology of food production": Subj. collection of research papers/ Chief. ed. Shubin O. O. - Donetsk: DonNUET, 2006. Vol.. 14 – 274p. (P.65-71).