Wojciech Zamojski • Jacek Mazurkiewicz Jarosław Sugier • Tomasz Walkowiak Janusz Kacprzyk *Editors*

Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014, Brunów, Poland

Advances in Intelligent Systems and Computing

Volume 286

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: kacprzyk@ibspan.waw.pl

For further volumes: http://www.springer.com/series/11156

About this Series

The series "Advances in Intelligent Systems and Computing" contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing.

The publications within "Advances in Intelligent Systems and Computing" are primarily textbooks and proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong e-mail: jwang@mae.cuhk.edu.hk

Wojciech Zamojski · Jacek Mazurkiewicz Jarosław Sugier · Tomasz Walkowiak Janusz Kacprzyk Editors

Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. June 30 – July 4, 2014, Brunów, Poland

Editors Wojciech Zamojski Institute of Computer Engineering, Control and Robotics Wrocław University of Technology Wrocław Poland

Jacek Mazurkiewicz Institute of Computer Engineering, Control and Robotics Wrocław University of Technology Wrocław Poland

Jarosław Sugier Institute of Computer Engineering, Control and Robotics Wrocław University of Technology Wrocław Poland Tomasz Walkowiak Institute of Computer Engineering, Control and Robotics Wrocław University of Technology Wrocław Poland

Janusz Kacprzyk Polish Academy of Sciences Systems Research Institute Warsaw Poland

ISSN 2194-5357 ISSN 2194-5365 (electronic) ISBN 978-3-319-07012-4 ISBN 978-3-319-07013-1 (eBook) DOI 10.1007/978-3-319-07013-1 Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939038

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

We are pleased to present the proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX, which took place in a beautiful Brunów Palace, Poland, from 30th June to 4th July, 2014.

Started in 2006, DepCoS – RELCOMEX is a conference organized annually by the Institute of Computer Engineering, Control and Robotics (CECR) from Wrocław University of Technology. Its roots go nearly 40 years back to the heritage of the other two cycles of events: RELCOMEX (1977 – 89) and Microcomputer Schools (1985 – 95) which were organized by the Institute of Engineering Cybernetics (the previous name of CECR) under the leadership of prof. Wojciech Zamojski, now also the DepCoS chairman. In this volume of "Advances in Intelligent and Soft Computing" we would like to present results of research on selected problems of complex systems and their dependability. Effects of the previous DepCoS events were published in volumes 97, 170 and 224 of this series.

Today's complex systems are integrated unities of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such systems comes not only from their involved technical and organizational structures built on hardware and software resources but mainly from complexity of information processes (processing, monitoring, management, etc.) realized in their specific environment. In operation of such wide-ranging and diverse systems their resources are dynamically allocated to ongoing tasks and the rhythm of system events (incoming and/or ongoing tasks, decisions of a management subsystem, system faults, "defense" system reactions, etc.) may be considered as deterministic or/and probabilistic event stream. Security and confidentiality of information processing introduce further complications into the modelling and evaluation methods. Diversity of the processes being realized, their concurrency and their reliance on in-system intelligence often significantly impedes construction of strict mathematical models and calls for application of intelligent and soft computing methods.

Dependability is the modern approach to reliability problems of contemporary complex systems. It is worth to underline the difference between the two terms: system dependability and system reliability. Dependability of systems, especially computer systems and networks, is based on multi-disciplinary approach to theory, technology, and maintenance of the systems working in a real (and very often unfriendly) environment. Dependability concentrates on efficient realization of tasks, services and jobs by a system considered as a unity of technical, information and human assets, while "classical" reliability is more restrained to analysis of technical system resources (components and structures built from them).

Presenting our conference proceedings to the broader audience we would like to express the sincerest thanks to all the authors who have chosen to describe their research here. It is our hope that the communicated results will help in further developments in complex systems design and analysis aimed at improving their dependability. We believe that the selected contributions will be interesting to all scientists, researchers, practitioners and students who work in these fields of science.

Concluding this brief introduction we must emphasize the role of all reviewers who took part in the evaluation process and whose contribution helped to refine the contents of this volume. Our thanks go to, in alphabetic order, Salem Abdel-Badeeh, Andrzej Białas, Frank Coolen, Manuel Gil Perez, Zbigniew Huzar, Jacek Jarnicki, Vyacheslav Kharchenko, Mieczysław M. Kokar, Alexey Lastovetsky, Marek Litwin, Jan Magott, István Majzik, Jacek Mazurkiewicz, Katarzyna M. Nowak, Yiannis Papadopoulos, Oksana Pomorova, Krzysztof Sacha, Ruslan Smeliansky, Janusz Sosnowski, Jarosław Sugier, Victor Toporkov, Carsten Trinitis, Tomasz Walkowiak, Max Walter, Bernd E. Wolfinger, Marina Yashina, Irina Yatskiv, Wojciech Zamojski, and Włodzimierz Zuberek.

The Editors

Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX

organized by

Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology under the auspices of prof. Tadeusz Więckowski, Rector

Brunów Palace, Poland, June 30 - July 4, 2014

Programme Committee

Wojciech Zamojski (Chairman)	Wrocław University of Technology, Poland
Salem Abdel-Badeeh	Ain Shams University Abbasia, Cairo, Egypt
Ali Al-Dahoud	Al-Zaytoonah University, Amman, Jordan
George Anders	University of Toronto, Canada
Artem Adzhemov	Technical University of Communications
	and Informatics, Moscow, Russia
Włodzimierz M. Barański	Wrocław University of Technology, Poland
Andrzej Białas	Institute of Innovative Technologies EMAG,
	Katowice, Poland
Dariusz Caban	Wrocław University of Technology, Poland
Krzysztof Cios	Virginia Commonwealth University, Richmond,
	USA
Frank Coolen	Durham University, UK
Antonio Ferrari	University of Aveiro, Portugal
Francesco Flammini	University of Naples "Federico II", Napoli, Italy
Manuel Gill Perez	University of Murcia, Spain
Janusz Górski	Gdansk University of Technology, Poland
Zbigniew Huzar	Wrocław University of Technology, Poland
Igor Kabashkin	Transport and Telecommunication Institute,
	Riga, Latvia
Janusz Kacprzyk	Polish Academy of Sciences, Warsaw, Poland
Andrzej Kasprzak	Wrocław University of Technology, Poland
Vyacheslav S. Kharchenko	National Aerospace University "KhAI",
	Kharkov, Ukraine
Mieczysław M. Kokar	Northeastern University, Boston, USA
Krzysztof Kołowrocki	Gdynia Maritime University, Poland
Leszek Kotulski	AGH University of Science and Technology,
	Krakow, Poland
Henryk Krawczyk	Gdansk University of Technology, Poland

Alexey Lastovetsky Marek Litwin Jan Magott Istvan Majzik

Jacek Mazurkiewicz Katarzyna M. Nowak

Yiannis Papadopoulos Oksana Pomorova Ewaryst Rafajłowicz Nikolay Rogalev

Krzysztof Sacha Mirosław Siergiejczyk Ruslan Smeliansky Czesław Smutnicki Janusz Sosnowski Jarosław Sugier Ryszard Tadeusiewicz

Victor Toporkov

Casten Trinitis Tomasz Walkowiak Max Walter Bernd E. Wolfinger Marina Yashina

Irina Yatskiv

Jan Zarzycki Włodzimierz Zuberek

Organizing Committee

Wojciech Zamojski (Chairman) Włodzimierz M. Barański Monika Bobnis Jacek Mazurkiewicz Jarosław Sugier Tomasz Walkowiak

University College Dublin, Ireland ITS Polska, Warsaw, Poland Wrocław University of Technology, Poland Budapest University of Technology and Economics, Hungary Wrocław University of Technology, Poland **Objectivity Bespoke Software Specialists** Sp. z o.o., Wrocław, Poland Hull University, UK Khmelnitsky National University, Ukraine Wrocław University of Technology, Poland Moscow Power Engineering Institute (Technical University), Russia Warsaw University of Technology, Poland Warsaw University of Technology, Poland Moscow State University, Russia Wrocław University of Technology, Poland Warsaw University of Technology, Poland Wrocław University of Technology, Poland AGH University of Science and Technology, Krakow, Poland Moscow Power Engineering Institute (Technical University), Russia Technische Universität München, Germany Wrocław University of Technology, Poland Siemens, Germany University of Hamburg, Germany Moscow Technical University of Communication and Informatics, Russia Transport and Telecommunication Institute, Riga, Latvia Wrocław University of Technology, Poland Memorial University, St.John's, Canada

Contents

Framework for the Distributed Computing of the Application Components	1
Razvan-Mihai Aciu, Horia Ciocarlie	1
Analysis of Statistical Characteristics of User Arrival Process to the Testing Service Artem Adzhemov, Nikolay Albov, Irina Sineva	13
The Role of Enterprise Social Networking (ESN) on Business: Five Effective Recommendations for ESN Saeed M. Alqahtani, Sultan Alanazi, Derek McAuley	23
Dependability and Safety Analysis of ETCS Communication for ERTMS Level 3 Using Performance Statecharts and Analytic Estimation	37
Entropy-Based Internet Traffic Anomaly Detection: A Case Study Przemysław Bereziński, Józef Pawelec, Marek Małowidzki, Rafał Piotrowski	47
A Formal Approach for Preventive Maintenance Workload Balancing Ammar Bessam	59
Computer Support for the Railway Safety Management System – Requirements Analysis Andrzej Białas	69
Computer Support for the Railway Safety Management System – First Validation Results Andrzej Białas	81

Reductions of Operators in Java Mutation Testing Ilona Bluemke, Karol Kulesza	93
An Approach for Planning and Analysis of the Sewage Sanitary Networks Using Some Calculation Formulas and Computer Simulation	103
Mathematical Model of Task Scheduling in Educational Cloud Agata Brzozowska, Jerzy Greblicki	115
Optimization and Control of Transport Processes in the Distributed Systems Alexander Buslaev, Mikhail Volkov	123
On Some Resources Placement Schemes in the 4-Dimensional Soft Degradable Hypercube Processors Network Jan Chudzikiewicz, Zbigniew Zieliński	133
Efficient Training of Context-Dependent Neural Nets with Conjugate Gradient Algorithms Piotr Ciskowski	145
Analysis of Mutation Operators for the Python Language Anna Derezińska, Konrad Hałas	155
Deterministic Schedule of Task in Multiprocessor Computer Systems with Higher Degree of Dependability Mieczyslaw Drabowski, Edward Wantuch	165
Using Simulation to Evaluate Dynamic Systems with Weibull or Lognormal Distributions Ernest Edifor, Neil Gordon, Martin Walker, Yiannis Papadopoulos	177
FSM Simulation of Cryptographic Protocols Using Algebraic Processor	189
Disturbance Injection in Dependability Assessment of Android Applications Piotr Gawkowski, Maciej Sułek	199
Approximate Algorithm for Fast Capacity Provisioning in WANs with Trade-Off between Performance and Cost under Budget Constraint Mariusz Gola, Adam Czubak	211

Evolution of Software Quality Models in Context of the Standard ISO 25010 Oleksandr Gordieiev, Vyacheslav Kharchenko, Nataliia Fominykh, Vladimir Sklyar	223
Model Checking of UML Activity Diagrams in Logic Controllers Design Iwona Grobelna, Michał Grobelny, Marian Adamski	233
Impact of Selected Java Idioms on Source Code Maintainability - Empirical Study Bogumiła Hnatkowska, Anna Jaszczak	243
Quantification of Temporal Fault Trees Based on Fuzzy Set Theory Sohag Kabir, Ernest Edifor, Martin Walker, Neil Gordon	255
Analysis of Physical Layer Model of WLAN 802.11g Data Transmission Protocol in Wireless Networks Used by Telematic Systems	265
Web Systems Availability Assessment Considering Attacks on Service Configuration Vulnerabilities Vyacheslav Kharchenko, Alaa Mohammed Abdul-Hadi, Artem Boyarchuk, Yurij Ponochovny	275
A Recommender System Based on Content Clustering Used to Propose Forum Articles Urszula Kużelewska, Ewa Guziejko	285
Simple Measure of Network Reliability Using the Variance of the Degree Distribution	293
CDM: A Prototype Implementation of the Data Mining JDM Standard Piotr Lasek	303
Confidential Transportation of Data on the Technical State of Facilities Dariusz Laskowski, Piotr Lubkowski	313
Test of the Multimedia Services Implementation in Information and Communication Networks Piotr Lubkowski, Dariusz Laskowski	325
Unified Approach to Network Systems Multicriteral Analysis	333

Jacek Mazurkiewicz

A Comparison of Forecasting Methods for Ro-Ro Traffic: A Case Study in the Strait of Gibraltar José Antonio Moscoso López, J.J. Ruiz-Aguilar, I. Turias, M. Cerbán, M.J. Jiménez-Come	345
Partial Blur: Model, Detection, Deblurring Dmytro Peleshko, Mariya Rashkevych, Andriy Klyuvak, Yuriy Ivanov	355
Software Support for Common Criteria Security Development Process on the Example of a Data Diode Dariusz Rogowski	363
Increasing Performance of SMS Based Information Systems Mariusz Rychlicki, Zbigniew Kasprzyk	373
Internet-Based Production Monitoring and Reporting Krzysztof Sacha, Wojciech Pikulski	383
Reliability Analysis of a Two-Stage Goel-Okumoto and Yamada S-shaped Model Ioannis G. Sideratos, Agapios N. Platis, Vasilis P. Koutras, Nicholas Ampazis	393
Reliability Assessment of Cooperation and Replacement of Surveillance Systems in Air Traffic Mirosław Siergiejczyk, Karolina Krzykowska, Adam Rosiński	403
Swarm Intelligence Metaheurisics Application in the Diagnosis of Transformer Oil Anis Smara, M'hana Bouktit, Ahmed Boubakeur	413
Performance Aspect of SaaS Application Based on Tenant-Based Allocation Model in a Public Cloud Wojciech Stolarz, Marek Woda	423
Low Cost FPGA Devices in High Speed Implementations of Keccak-f Hash Algorithm Jarosław Sugier	433
Distributed Time Management in Wireless Sensor Networks Tomasz Surmacz, Bartosz Wojciechowski, Maciej Nikodem, Mariusz Słabicki	443
Heuristic Cycle-Based Scheduling with Backfilling for Large-Scale Distributed Environments Victor Toporkov, Anna Toporkova, Alexey Tselishchev, Dmitry Yemelyanov, Petr Potekhin	455

Behavior of Web Servers in Stress Tests Tomasz Walkowiak	467
The Impact of Reconfiguration Time on the Dependability of Complex Web Based Systems Tomasz Walkowiak, Dariusz Caban	477
Propagation Losses in Urban Areas Marian Wnuk, Leszek Nowosielski	489
Web Service for Data Extraction from Semi-structured DataSourcesMarina V. Yashina, Ivan I. Nakonechnyy	499
Investigation of System Reliability Depending on Some System Components States Elena Zaitseva, Vitaly Levashenko, Miroslav Kvassay	511
Model Fusion for the Compatibility Verification of Software Components W.M. Zuberek	521

Erratum

CDM: A Prototype Implementation of the Data Mining JDM	
Standard	E1
Piotr Lasek	
Author Index	531

Web Systems Availability Assessment Considering Attacks on Service Configuration Vulnerabilities

Vyacheslav Kharchenko^{1,2}, Alaa Mohammed Abdul-Hadi¹, Artem Boyarchuk¹, and Yurij Ponochovny³

¹ National Aerospace University KhAI, Kharkiv, Ukraine
² Centre of Safety Infrastructure-Oriented Research and Analysis, Kharkiv, Ukraine
V.Kharchenko@khai.edu
³ Poltava National Technical University named after Yurij Kondratyuk, Poltava, Ukraine
pnchl@rambler.ru

Abstract. The paper examines the issues of web systems assessment availability. It is defined that unavailability of web services may be caused by internal and external factors in particular server side vulnerability attacks. Three Markov's models of web system availability are developed; these models consider influence of software defects and vulnerability attacks for DNS, DHCP and Route services. Elimination of configuration vulnerabilities during system operation is considered. Conclusions about the impact of the probability of detection and elimination of vulnerabilities and the recovery rate on the web systems availability function are proposed.

Keywords: web system availability, Markov's models, attacks on vulnerability services.

1 Introduction

The successful beginning and operation of web systems is only possible in case of payback on their functioning and positive profit earning. The break-even point is reached after the start of system exploitation, and it might not be achieved at all if risk assessment was wrong. This leads to the importance of modeling the functioning of web systems based on actual cyber security risks [1-3].

Nowadays, most web services experienced the attacks of various kinds. With regard to commercial Web services, they certainly are the most attractive target for attacks [1, 4]. In such circumstances, modeling of web attacks as events that lead to their inaccessibility is in high demand. However, today the majority of the models of attacks, threats and incidents have probabilistic nature of risk assessment. Only some sources refer to the possibility of web system modeling using semi-Markov processes and Petri nets [5].

The modern web system is a complex multileveled and distributed system. It can be presented by the charts with various hierarchy levels. This paper discusses the three-component reliability block diagram of the web system (RBD). It describes the interaction of basic services: IP-address assignment (DHCP), IP routing (Route) and support the direct and inverse transformation of text URLs to IP-addresses (DNS). This decision is due to the fact that vulnerability subsets of mentioned services might be distinguished in line with CVE classifiers [6,7]. This allows getting estimates of the intensity of attacks and their criticality [8].

Unavailability of any of these services entails the refusal in customer service. On this basis, the RBD will include three consecutive elements, each of which corresponds the up-states of three services (fig.1).

Fig. 1. Reliability block diagram of web system

While assessing web systems availability the focus is given on Markov's models based on hardware and software failures (caused by physical and design faults correspondingly) and recoveries [9, 10]. Researches [11, 12] analyze the concept of an integrated approach of dependability as a property which combine in particular reliability, availability and information security. In [13] the possibility of the development of mathematical models that consider the unavailability of web systems in context security is proposed. Unavailability is caused by not only by software faults, but by attacks on their components as well.

The objective of this paper is to develop Markov models of web systems availability considering attacks, and to investigate the impact of input parameters of the model to the availability function. First of all, we research behavior of web systems in nonstationary modes taking into account various kinds of attacks and recovery procedures. The paper is structured as follows: the second section describes the simple Markov models of web-services without attacks (MA1) and with mechanism for restart after attack (MA2). The third section describes the MA3 model used for assessment of web-service availability considering consequent fixing of vulnerabilities after attacks. Verification results and case study of developed models are presented in the fourth and fifth sections. The last section includes the conclusions and directions of future work.

2 Availability Models of Web Systems without Attacks and with System Restart after Attack

2.1 Model MA1

We consider an ideal web system model without attacks as a basic model in which there are processes of software failures and recoveries of related network services (MA1). Resulting characteristics of such model often are used by hosting providers as the availability and uptime rate of hosting platforms.

Marked graph of states and transitions of such model is shown at the fig.2,a. It includes initial up-state S0 and down-states S1, S2 and S3. The transitions into down-states are marked with the corresponding failure rates (ladns, ladhcp and laroute). System returns into up-state after service recovery with corresponding rates mudns, mudhcp and muroute.

Author Index

Abdul-Hadi, Alaa Mohammed 275Aciu, Razvan-Mihai 1 Adamski, Marian 233Adzhemov, Artem 13Alanazi, Sultan 23Albov, Nikolay 13Algahtani, Saeed M. 23Ampazis, Nicholas 393 Babczyński, Tomasz 37 Bereziński, Przemysław 47 Bessam, Ammar 59Białas, Andrzej 69,81 Bluemke, Ilona 93 103Bogdan, Lucyna Boubakeur, Ahmed 413Bouktit, M'hana 413Boyarchuk, Artem 275Brzozowska, Agata 115Buslaev, Alexander 123Caban, Dariusz 477 Cerbán, M. 345 Chudzikiewicz, Jan 133Ciocarlie, Horia 1 Ciskowski, Piotr 145Czubak, Adam 211Derezińska, Anna 155Drabowski, Mieczyslaw 165Edifor, Ernest 177, 255 Fominykh, Nataliia 223Frolov, Alexander 189

Gawkowski, Piotr 199Gola, Mariusz 211Gordieiev, Oleksandr 223Gordon, Neil 177, 255 Greblicki, Jerzy 115Grobelna, Iwona 233Grobelny, Michał 233Guziejko, Ewa 285Hałas, Konrad 155Hnatkowska, Bogumiła 243Ivanov, Yuriy 355Jaszczak, Anna 243Jiménez-Come, M.J. 345Kabir, Sohag 255Kasprzyk, Zbigniew 265, 373 Kharchenko, Vyacheslav 223, 275 Klyuvak, Andriy 355Koutras, Vasilis P. 393 Krzykowska, Karolina 403Kulesza, Karol 93 Kużelewska, Urszula 285Kvassay, Miroslav 511Lam, Ho Tat 293Lasek, Piotr 303 Laskowski, Dariusz 313, 325 Levashenko, Vitaly 511López, José Antonio Moscoso 345

Łubkowski, Piotr

313, 325

Magott, Jan 37 Małowidzki, Marek 47 Mazurkiewicz, Jacek 333 McAuley, Derek 23Nakonechnyv, Ivan I. 499Nikodem, Maciej 443 Nowosielski, Leszek 489Papadopoulos, Yiannis 177 Pawelec, Józef 47 Peleshko, Dmytro 355Petriczek, Grażyna 103Pikulski, Wojciech 383 Piotrowski, Rafał 47Platis, Agapios N. 393Ponochovny, Yurij 275Potekhin, Petr 455Rashkevych, Mariya 355Rogowski, Dariusz 363 Rosiński, Adam 403 Ruiz-Aguilar, J.J. 345Rychlicki, Mariusz 265, 373 Sacha, Krzysztof 383 Sideratos, Ioannis G. 393 Siergiejczyk, Mirosław 403 Sineva, Irina 13Sklyar, Vladimir 223

Słabicki, Mariusz 443 Smara, Anis 413 Stolarz, Wojciech 423Studziński, Jan 103Sugier, Jarosław 433 Sułek, Maciej 199Surmacz, Tomasz 443 Szeto, Kwok Yip 293Toporkov, Victor 455Toporkova, Anna 455Tselishchev, Alexev 455Turias, I. 345 Vinnikov. Alexander 189Volkov, Mikhail 123Walker, Martin 177, 255 Walkowiak, Tomasz 467, 477 Wantuch, Edward 165Wnuk, Marian 489Woda, Marek 423 Wojciechowski, Bartosz 443 Yashina, Marina V. 499 Yemelyanov, Dmitry 455Zaitseva, Elena 511Zieliński, Zbigniew 133Zuberek, W.M. 521